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SUMMARY

Identification of key factors associated with the risk of developing cardiovascular disease and quantification
of this risk using multivariable prediction algorithms are among the major advances made in preventive
cardiology and cardiovascular epidemiology in the 20th century. The ongoing discovery of new risk
markers by scientists presents opportunities and challenges for statisticians and clinicians to evaluate these
biomarkers and to develop new risk formulations that incorporate them. One of the key questions is how
best to assess and quantify the improvement in risk prediction offered by these new models. Demonstration
of a statistically significant association of a new biomarker with cardiovascular risk is not enough. Some
researchers have advanced that the improvement in the area under the receiver-operating-characteristic
curve (AUC) should be the main criterion, whereas others argue that better measures of performance of
prediction models are needed. In this paper, we address this question by introducing two new measures,
one based on integrated sensitivity and specificity and the other on reclassification tables. These new
measures offer incremental information over the AUC. We discuss the properties of these new measures
and contrast them with the AUC. We also develop simple asymptotic tests of significance. We illustrate
the use of these measures with an example from the Framingham Heart Study. We propose that scientists
consider these types of measures in addition to the AUC when assessing the performance of newer
biomarkers. Copyright q 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Over 30 years after the construction of the first multivariable risk prediction model (also called
risk profile model) predicting the probability of developing cardiovascular disease (CVD) [1],
researchers continue to seek new risk factors that can predict CVD and that can be incorporated
into risk assessment algorithms. A general consensus exists that the information regarding an
individual’s age, baseline levels of systolic and diastolic blood pressure and serum cholesterol,
smoking and diabetes status are all useful predictors of the CVD risk over a reasonable time period in
the future, typically over 1–10 years [2–5]. Quantification of vascular risk is accomplished through
risk equations or risk score sheets that have been developed on the basis of observations from
large cohort studies [2–6]. For example, the Framingham risk score has been routinely applied,
validated and calibrated for use in different countries, and for different ethnicities across countries
[7–9]. Various statistical models have been utilized over the decades to develop these equations.
Presently, Cox proportional hazards and Weibull parametric models seem to be among the most
frequently used ones [2–6]. However, CVD risk prediction is an ongoing work in progress. New
risk factors or markers are being identified and proposed constantly, and vie with each other for
consideration for incorporation into risk prediction algorithms. Plasminogen-activator inhibitor
type 1, gamma glutamyl transferase, C-reactive protein (CRP), B-type natriuretic peptide, urinary
albumin-to-creatinine ratio, left ventricular hypertrophy or fibrinogen are only a few examples
from a very long list [2, 10–12].

The critical question arises as to how to evaluate the usefulness of a new marker. D’Agostino
[13] lists four initial decisions that guide the process: (1) defining the population of interest; (2)
defining the outcome of interest; (3) choosing how to incorporate the competing pre-existing set of
risk factors and (4) selecting the appropriate model and tests to evaluate the incremental yield of
a new biomarker. This paper focuses on the last issue, assuming that we have adequately defined
or answered the issues described in (1)–(3).

The most basic necessary condition required of any new marker is its statistical significance. It
is hard to imagine that one would argue for an inclusion of a new marker into a risk prediction
formulation if it is not related to the outcome of interest in a statistically significant manner.
Statistical significance, however, does not imply either clinical significance or improvement in
model performance. Indeed, many biomarkers with weak or moderate relations to the outcome of
interest can be associated in a statistically significant fashion if examined using a large enough
sample size.

Evaluation of risk prediction models and adjustments to them require model performance mea-
sures [7, 14]. A key measure of the clinical utility of a survival model is its ability to discrim-
inate or separate those who will develop the event of interest from those who will not. Various
measures have been proposed to capture discrimination [14], but the area under the receiver-
operating-characteristic (ROC) curve (AUC) is the most popular metric [14–16]. Its probabilistic
interpretation addresses simply and directly its discriminatory ability. It is the probability that given
two subjects, one who will develop an event and the other who will not, the model will assign
a higher probability of an event to the former. Its traditional application in the context of binary
outcomes has been extended to the time-to-event models, which are the standard models for CVD
risk prediction [17, 18].

Researchers, extending existing methodology, began evaluating new markers based on their
ability to increase the AUC. It quickly became apparent that, for models containing standard risk
factors and possessing reasonably good discrimination, very large ‘independent’ associations of
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the new marker with the outcome are required to result in a meaningfully larger AUC [19–21].
None of the numerous new markers proposed comes close in magnitude to these necessary levels
of association. In response to this, some scientists have argued that we need to wait for new and
better markers; other researchers have sought model performance measures beyond the AUC to
evaluate the usefulness of markers. Reassignment of subjects into risk categories (reclassification
tables) and predictiveness curves form opposite ends of the spectrum of new ideas [22–24]. These
efforts address Greenland’s and O’Malley’s suggestion that ‘statisticians should seek new ways,
beyond the ROC curve, to evaluate clinically useful new markers for their ability to improve upon
current models such as the Framingham Risk Score’ [20].

In this paper, we propose two new ways of evaluating the usefulness of a new marker. They
fall somewhere in the middle of the spectrum mentioned above. One is based on event-specific
reclassification tables, and the other on the new model’s ability to improve integrated (average)
sensitivity (IS) without sacrificing integrated (average) specificity.

We start with a careful look at reclassification tables and suggest an objective way of quantifying
improvement in categories through what we term ‘the net reclassification improvement’ or NRI.
This method requires that there exist a priori meaningful risk categories (e.g. 0–6, 6–20, >20
per cent 10-year risk of coronary heart disease [CHD] based on the Third Adult Treatment Panel
[ATP III] risk classification [5]). Then, we extend this idea to the case of no ‘cut-offs’ to define our
second measure, the integrated discrimination improvement (IDI). We propose sample estimators
for both measures and show how the IDI can be estimated by the difference in discrimination
slopes proposed by Yates [25]. We also derive simple asymptotic tests to determine whether the
improvements in our measures are significantly different from zero. As an illustration, we show
a Framingham Heart Study example, in which the NRI and IDI indicate that HDL cholesterol
offers statistically significant improvement in the performance of a CHD model even though no
meaningful or significant improvement in the AUC is observed. Formal mathematical developments
for some identities are presented in the Appendix.

NET RECLASSIFICATION IMPROVEMENT AND INTEGRATED DISCRIMINATION
IMPROVEMENT

In this section, we propose two new ways of assessing improvement in model performance offered
by a new marker. The NRI focuses on reclassification tables constructed separately for participants
with and without events, and quantifies the correct movement in categories—upwards for events
and downwards for non-events. The IDI does not require categories, and focuses on differences
between ISs and ‘one minus specificities’ for models with and without the new marker. This section
introduces the concepts in general terms; a more formal discussion is presented in the next section
followed by a practical example.

From AUC to reclassification

The developments concerning the AUC come from applications to diagnostic testing in radiology
[16]. AUC can be defined as the area under the plot of sensitivity vs ‘one minus specificity’ for all
possible cut-off values. This definition has been shown to be equivalent to defining AUC as the
probability that a given diagnostic test (or predictive model in our case) assigns a higher probability
of an event to those who actually have (or develop) events [16]. The improvement in AUC for
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a model containing a new marker is defined simply as the difference in AUCs calculated using
a model with and without the marker of interest. This increase, however, is often very small in
magnitude; for example, Wang et al. show that the addition of a biomarker score to a set of standard
risk factors predicting CVD increases the model AUC only from 0.76 to 0.77 [12]. Ware and Pepe
show simple examples in which enormous odds ratios are required to meaningfully increase the
AUC [19, 21].

Because of the above, some researchers started looking at different methods of quantifying the
improvement. Reclassification tables have been gaining popularity in medical literature [10, 22, 23].
For example, Ridker et al. [10] compare a model developed for CVD risk prediction in women
using only standard risk factors (‘old’ model) with a model that also includes parental history of
myocardial infarction and CRP (‘new’ model), and observe a minimal increase in the AUC from
0.805 to 0.808. However, when they classify the predicted risks obtained using their two models
(old and new) into four categories (0–5, 5–10, 10–20, >20 per cent 10-year CVD risk) and then
cross-tabulate these two classifications, they show that about 30 per cent of individuals change their
category when comparing the new model with the old one. They further calculate the actual event
rates for those reclassified and call the reclassification successful if the actual rate corresponds to
the new model’s category.

Unfortunately, reclassification tables constructed and interpreted in this manner offer limited
means of evaluating improvement in performance. Relying solely on the number or percentage
of subjects who are reclassified can be misleading. Additionally, calculating event rates among
the reclassified individuals does not lead to an objective assessment of the true improvement in
classification. For instance, even if we reclassify 100 people from the 10–20 per cent 10-year CVD
risk category into the above 20 per cent group and the ‘actual’ event rate among these individuals
is 25 per cent, we improved the placement of 25 people, but not the remaining 75 who should
have stayed in the lower risk category.

We suggest a different way of constructing and interpreting the reclassification tables. The
reclassification of people who develop and who do not develop events should be considered
separately. Any ‘upward’ movement in categories for event subjects (i.e. those with the event) im-
plies improved classification, and any ‘downward movement’ indicates worse reclassification. The
interpretation is opposite for people who do not develop events. The improvement in reclas-
sification can be quantified as a sum of differences in proportions of individuals moving up
minus the proportion moving down for people who develop events, and the proportion of indi-
viduals moving down minus the proportion moving up for people who do not develop events.
We call this sum the NRI. Equivalently, the NRI can be calculated by computing the differ-
ence between the proportions of individuals moving up and the proportion of individuals moving
down for those who develop events and the corresponding difference in proportions for those
who not develop events, and taking a difference of these two differences. A simple asymp-
totic test that can be used to determine the significance of the improvement, separately for
event and non-event individuals and combining the two groups (NRI), is presented in the next
section.

From reclassification to discrimination slopes

One potential drawback of the reclassification-based measure defined above is its dependence on
the choice of categories. This limitation can be overcome by further extending the concept of the
NRI. If we assign 1 for each upward movement, −1 for each downward movement and 0 for no
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movement in categories, the NRI can be expressed as∑
i in events v(i)

# events
−

∑
j in nonevents v( j)

# nonevents
(1)

where v(i) is the above-defined movement indicator. Now consider the categorization so fine
that each person belongs to their own category. Then any increase in predicted probabilities for
individuals with events means upward movement (v(i)= 1) and any decrease is a downward
movement (v(i)=−1). In this case, it makes sense to assign to each person the actual difference
in predicted probabilities instead of 1, −1 or 0. If we denote the new model-based predicted
probabilities of an event by p̂new and old model-based probabilities by p̂old, we have∑

i in events ( p̂new(i) − p̂old(i))

# events
−

∑
j in nonevents ( p̂new( j) − p̂old( j))

# nonevents
(2)

We show in the Appendix that the first term in (2) quantifies improvement in sensitivity and the
negative of the second term quantifies improvement in specificity. Also, by rearranging the terms
in (2), we observe that it is equivalent to the difference in discrimination slopes as introduced
by Yates [25, 26] (discrimination slope can be defined as a difference between mean predicted
probabilities of an event for those with events and the corresponding mean for those without
events).

The difference in model-based discrimination slopes is an important measure of improvement in
model performance. As shown in the Appendix, it is a sample equivalent of the difference between
the integrated difference in sensitivities and the integrated difference in ‘one minus specificities’
between the new and old models. This integration is over all possible cut-offs. Thus, it quantifies
jointly the overall improvement in sensitivity and specificity. In simpler terms, the area under the
sensitivity curve is estimated by the mean of predicted probabilities of an event for those who
experience events, and the area under the ‘one minus specificity’ curve is estimated by the mean
of predicted probabilities of an event for those who do not experience events. We suggest the
integrated differences in sensitivities and ‘one minus specificities’ and their difference as another
measure of improvement in performance offered by the new marker. We call the last difference
the IDI and estimate it using the difference in discrimination slopes. A simple asymptotic test of
significance is provided in the next section.

STATISTICAL PROCEDURES AND CONSIDERATIONS

Net reclassification improvement

Consider a situation in which predicted probabilities of a given event of interest are estimated using
two models that share all risk factors, except for one new marker. Let us categorize the predicted
probabilities based on these two models into a set of clinically meaningful ordinal categories of
absolute risk and then cross-tabulate these two classifications. Define upward movement (up) as a
change into higher category based on the new model and downward movement (down) as a change
in the opposite direction. If D denotes the event indicator, we define the NRI as

NRI=[P(up|D = 1) − P(down|D = 1)] − [P(up|D = 0) − P(down|D = 0)] (3)
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To estimate NRI using sample data, we define estimators for the four probabilities comprising
the NRI:

P̂(up|D = 1) = p̂up,events = # events moving up

# events
(4)

P̂(down|D = 1) = p̂down,events = # events moving down

# events
(5)

P̂(up|D = 0) = p̂up,nonevents = # nonevents moving up

# nonevents
(6)

P̂(down|D = 0) = p̂down,nonevents = #nonevents moving down

# nonevents
(7)

The NRI is estimated as

N̂RI= ( p̂up,events − p̂down,events) − ( p̂up,nonevents − p̂down,nonevents) (8)

We note that formula (8) is equivalent to formula (1) of the previous section.
Assuming independence between event and non-event individuals and followingMcNemar’s [27]

logic for significance testing in correlated proportions (and using the properties of multinomial
distribution), we arrive at a simple asymptotic test for the null hypothesis of NRI= 0:

z = N̂RI√
p̂up,events + p̂down,events

# events
+ p̂up,nonevents + p̂down,nonevents

# nonevents

(9)

Individual components of the NRI, assessing improvement in event and non-event classifications,
can be tested using

zevents = p̂up,events − p̂down,events√
p̂up,events + p̂down,events

# events

(10)

znonevents = p̂down,nonevents − p̂up,nonevents√
p̂down,nonevents + p̂up,nonevents

# nonevents

(11)

Integrated discrimination improvement

Denote by IS the integral of sensitivity over all possible cut-off values from the (0, 1) interval and
by IP the corresponding integral of ‘one minus specificity’. We define the IDI as follows:

IDI= (ISnew − ISold) − (IPnew − IPold) (12)

Subscript ‘new’ in the above expression refers to the model with the new marker and subscript
‘old’ to the model without it. Since the integrals of sensitivity and ‘one minus specificity’ over
the (0, 1) interval can be seen as average sensitivity and ‘one minus specificity’, the IDI can be
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viewed as a difference between improvement in average sensitivity and any potential increase in
average ‘one minus specificity’. It can also be seen as an integrated difference in Youden’s indices
[28].

We show in the Appendix that the IDI can be estimated as follows:

ÎDI= ( p̂new,events − p̂old,events) − ( p̂new,nonevents − p̂old,nonevents) (13)

where p̂new,events is the mean of the new model-based predicted probabilities of an event for those

who develop events, p̂old,events is the corresponding quantity based on the old model, p̂new,nonevents
is the mean of the new model-based predicted probabilities of an event for those who do not develop
events and p̂old,nonevents is the corresponding quantity based on the old model. Rearranging the
terms in (13), we obtain

ÎDI= ( p̂new,events − p̂new,nonevents) − ( p̂old,events − p̂old,nonevents) (14)

which is a difference in discrimination slopes between the new and old models, as proposed by
Yates [25, 26].

Since the actual events do not depend on the model, the standard deviation of ( p̂new,events −
p̂old,events) from equation (13) can be calculated as the standard error of paired differences of
new and old model-based predicted probabilities across all event subjects, ŝeevents. Denoting the
corresponding estimator for non-events by ŝenonevents and assuming independence between events
and non-events and their predicted probabilities, we obtain a simple asymptotic test for the null
hypothesis of IDI= 0:

z = ÎDI√
(ŝeevents)2 + (ŝenonevents)2

(15)

Tests for means of dependent samples tend to have good asymptotic properties, so we expect the
above statistic to be close to the standard normal for sufficiently large sample sizes. Individual
components of the IDI assessing improvement separately for IS and integrated specificity can be
tested using the approach of paired samples.

IDI vs improvement in AUC

The area under the sensitivity curve or, equivalently, the IS can be seen as an average sensitivity
over the (0, 1) interval of possible cut-offs. The same is true for ‘one minus specificity’. If we
are willing to declare a new marker useful if it offers an improvement in sensitivity without an
increase in ‘one minus specificity’, then we will be looking primarily at a difference in average
(integrated) sensitivities. This is a regular or unweighted average. At the same time, a closer look
at the formula for the AUC as an area under the plot of sensitivity vs ‘one minus specificity’ (see
formula (A3) in the Appendix) reveals that it is also an average sensitivity, but this average is
weighted by the derivative of specificity. Thus, the IDI and improvement in AUC are related in the
sense that both can be seen as corrected average sensitivities—the IDI is corrected by the subtracted
factor assessing the undesirable increase in ‘one minus specificity’, and the AUC by weighting the
sensitivities of the two models of interest by the corresponding derivatives of specificities.
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Positive and negative predictive values

It is important to note that the positive and negative predictive values (PPV and NPV) are two
other important measures that complement sensitivity and specificity. It is natural to consider an
improvement in PPV or NPV for a given cut-off or integrated over a range of cut-offs. However, this
creates difficulties. An easy analog to the McNemar’s test [27] for the improvement in sensitivity
does not exist for PPV, since the denominators do not stay the same (numbers of subjects classified
as events will vary from model to model). The usefulness of the PPV integrated over all possible
cut-offs is substantially limited by the fact that large cut-offs lead to small denominators. An
improvement of 5 per cent means something very different for denominators of 100 vs 10. This
is not the case with IS, where the denominator remains fixed and small values of sensitivity have
small effect on the overall measure. In conclusion, we recommend calculating PPV and NPV for
a set of meaningful cut-offs with possible averaging over this meaningful set and using bootstrap
methods for any formal testing.

APPLICATION

Effect of adding HDL cholesterol to coronary heart disease risk prediction models

The Framingham Heart Study started in 1948 [29] with the enrollment of the ‘original’ cohort
of 5209 individuals. In 1971, 5124 participants (the offspring of the original cohort and their
spouses) were enrolled into the Framingham Offspring Study. Of these, 3951 participants aged
30–74 attended the fourth Framingham Offspring cohort examination between 1987 and 1992.
After excluding participants with prevalent CVD and missing standard risk factors including lipid
levels, 3264 women and men remained eligible for this analysis. All participants gave written
informed consent, and the study protocol was approved by the Institutional Review Board of the
Boston Medical Center. Participants were followed for 10 years for the development of the first
CHD event (myocardial infarction, angina pectoris, coronary insufficiency or CHD death). Cox
proportional hazards models were employed with sex, diabetes and smoking as dichotomous and
age, systolic blood pressure (SBP), total and HDL cholesterol (in one of the two models) as
continuous predictors. The last three were standardized to facilitate comparisons of hazard ratios
for the risk factors.

We evaluated the improvement in model performance introduced by the inclusion of HDL
cholesterol using the indices described in previous sections. The increase in the AUC was evaluated
and tested for significance using the test proposed by DeLong et al. [30]. IDI was estimated using
formula (14), and test of significance was carried out as described by (15). We also examined
and tested the improvement in the individual components (IS and IP) of IDI. Sensitivities and
specificities at cut-off points of 6 and 20 per cent 10-year CHD risk were compared using the
McNemar’s test, and the change in PPV and NPV was assessed with bootstrap. Reclassification
tables for subjects who do and do not develop events were constructed using <6, 6–20, >20
per cent 10-year CHD risk categories (based on the ATP III, cf. [5]). NRI and its components
were estimated and tested for significance using the developments given in formulas (9)–(11). For
simplicity of the presentation, we used 10-year predicted probabilities of a CHD event from the
Cox model, with all performance measures calculated for a binary outcome ignoring time to event.
Analyses for this paper were done using SAS software, version 9.1 (Copyright 2002–2003 SAS
Institute Inc., Cary, NC, USA). All p-values given are two sided; the level of significance was set
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Table I. Cox regression coefficients for standard risk factors and HDL.

95 per cent hazard ratio
Variable Parameter estimate Standard error p-value Hazard ratio confidence limits

Sex −0.80875 0.17809 <0.0001 0.445 0.314 0.631
Diabetes 0.91487 0.21798 <0.0001 2.496 1.628 3.827
Smoking 0.31167 0.17316 0.0719 1.366 0.973 1.918
Age 0.05606 0.00922 <0.0001 1.058 1.039 1.077
St SBP 0.16826 0.07889 0.0329 1.183 1.014 1.381
St Total 0.15092 0.07239 0.0371 1.163 1.009 1.340
St HDL −0.42767 0.10322 <0.0001 0.652 0.533 0.798

St refers to standardized variables. Age is in years.

Figure 1. ROCs for models with and without HDL.

to 0.05. We note that this example is intended to illustrate concepts discussed in the paper rather
than serve as a substantive analysis.

During the 10 years of follow-up, 183 individuals experienced a first CHD event. The haz-
ard ratios and observed statistical significance levels for all predictors in the model including
HDL are displayed in Table I. HDL was highly significant (HR= 0.65, p-value<0.001), and the
AIC (Akaike Information Criterion [31]) decreased from 2779 to 2762 on addition of HDL. The
ROC curves for the model without and with HDL are presented in Figure 1. The corresponding
AUCs were 0.762 and 0.774, with the difference not statistically significant (p-value= 0.092).
The sensitivities of models without and with HDL at the 6 and 20 per cent cut-offs were statisti-
cally significantly different (0.705 vs 0.765, p-value= 0.012 and 0.131 vs 0.191, p-value= 0.008,
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Figure 2. Sensitivity (top two lines) and 1-specificity as a function of risk cut-off.
Models with (gray) and without HDL (black).

respectively). Specificities were not significantly different at either cut-off (without HDL: 0.682
vs 0.684, p-value= 0.682, with HDL: 0.968 vs 0.967, p-value= 0.508). The PPV increased from
0.116 to 0.126 for the 0.06 cut-off and from 0.197 to 0.254 for 0.20, with neither difference
reaching statistical significance. No significant differences were noted in NPVs for either cut-
off. IDI estimated at 0.009 was statistically significant (p-value= 0.008), mainly due to a 7
per cent increase in IS (0.120 vs 0.128 for the old vs new model, respectively; p-value= 0.022). The
change in integrated ‘one minus specificity’ was not significant (0.0570 vs 0.0566, p-value= 0.283).
These changes are depicted graphically in Figure 2.

Reclassifications for subjects with and without events are summarized in Table II. For 29
subjects who experienced CHD events, classification improved using the model with HDL, and for
7 people it became worse, with the net gain in reclassification proportion of 0.120, significantly
greater than zero (p-value<0.001). The net gain in reclassification proportion for subjects who
did not experience an event was not significant; 174 individuals were reclassified down and 173
were reclassified up (p-value= 0.957). The NRI was estimated at 0.121 and was highly significant
(p-value<0.001).

HDL cholesterol is routinely used in CHD prediction models [3–5]. Both IDI and NRI suggest
that including it in the prediction model results in significant improvement in performance. That
conclusion could not have been drawn relying solely on the increase in AUC. The increase in
IDI, albeit significant, was of small magnitude—0.009 on the absolute scale or 7 per cent relative
increase. It can be interpreted as equivalent to the increase in average sensitivity given no changes
in specificity. Based on the NRI and its components, we conclude that addition of HDL improved
classification for a net of 12 per cent of individuals with events, with no net loss for non-events.
Even though the NRI results look convincing, caution needs to be given to their interpretation, as
it is dependent on the somewhat arbitrary choice of categories.
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Table II. Reclassification among people who experience a CHD event and those who do not experience
a CHD event on follow-up.

Model without HDL Model with HDL

Frequency (Row per cent) <6 per cent 6–20 per cent >20 per cent Total

Participants who experience a CHD Event
<6 per cent 39 (72.22) 15 (27.78) 0 (0.00) 54
6–20 per cent 4 (3.81) 87 (82.86) 14 (13.33) 105
>20 per cent 0 (0.00) 3 (12.50) 21 (87.50) 24
Total 43 105 35 183

Participants who do not experience a CHD Event
<6 per cent 1959 (93.24) 142 (6.76) 0 (0.00) 2101
6–20 per cent 148 (16.78) 703 (79.71) 31 (3.51) 882
>20 per cent 1 (1.02) 25 (25.51) 72 (73.47) 98
Total 2108 870 103 3081

DISCUSSION

In this paper, we proposed two new ways of assessing improvement in model performance
accomplished by adding new markers—the net reclassification improvement (NRI) and integrated
discrimination improvement (IDI). We derived sample estimators and simple asymptotic tests. Both
measures are comprised of event and non-event components that can be examined separately. We
also showed the relationship, between the new measures and how they relate to the improvement
in AUC.

It is important to note that we did not address model calibration, another key measure of model
performance. Calibration quantifies how closely the predicted probabilities of an event match the
actual experience [7, 14, 26]. When evaluating the performance of a model after addition of a new
marker, it is essential to check for improvement (or at least no adverse effect if other measures
improve) in calibration, which can be quantified by, for example, the Hosmer–Lemeshow’s chi-
square or its modifications [32, 33].

The choice of the improvement metric should take into account the question to be answered—for
example, if falling above or below a given cut-off is the primary basis for the choice of care, the
cut-off specific improvement in sensitivity, specificity or the NRI might be the best choice. On the
other hand, if no established risk cut-offs exist, the above might be of little use and the AUC or
IDI might be preferred.

Additional characteristics of the IDI merit a mention. First, it is worth noting that since the
discrimination slope suffers from the drawback of being dependent on model calibration, the same
might also affect the IDI. Multiplying the predicted probabilities of event by a ‘calibration factor’,
defined as a ratio of the observed event rate to the mean predicted probability of an event, will
often substantially reduce this problem.

Second, since we expect to evaluate only new markers meant to improve model performance,
the test given in (15) might be one sided. On the other hand, the IDI represents an averaged
measure with reduced variability, and thus a more conservative significance level of 0.01 should be
considered to avoid declaring too many markers useful. Another strategy would look at individual
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Figure 3. Weight functions. w1: AUC weight; w2: IS weight; w3: utility weight.

components of the IDI and perform only a test for difference in average sensitivities, provided no
significant difference exists in average ‘one minus specificities’.

We noted earlier that the AUC, IS and integrated ‘one minus specificity’ can be seen as weighted
averages over the range of all cut-offs. The weight functions are depicted in Figure 3. Graph w1
corresponds to the derivative of specificity (or the pdf of predicted probabilities for non-events)
used as a weight for sensitivity in the calculation of the AUC (cf. formula (A3) in the Appendix).
Similarly, graph w2 is the weight used in the calculation of integrated sensitivity, IS. We note that the
AUC weights more heavily values of sensitivity corresponding to small cut-offs, resulting in large
sensitivities being weighted more heavily. This might explain why some apparent improvements
in sensitivity for certain cut-offs do not translate into improvements in the AUC. The calculation
of IS applies equal weight across all cut-offs or values of sensitivity. In many applications, some
ranges of cut-off values are of more interest than others. A utility function of the type depicted by
graph w3 in Figure 3 can be constructed to indicate which cut-offs are of particular importance.
This utility function could be used as a weight function in the calculation of IS or integrated ‘one
minus specificity’, leading to a weighted IDI.

Alternative weighting might also be considered to accommodate differences in the importance
of sensitivity and specificity. In this context, the IDI and NRI could be presented as weighted
differences of their components that correspond to improvements in sensitivity and specificity.

The discussion thus far did not draw any distinction between applications that do and do not
consider time to event. Chambless and Diao [34] show that ignoring time to event in studies
with long follow-up might lead to biased estimates of the AUC, sensitivity and specificity, and
suggest ways to rectify the problem. The result of equation (14) can be generalized to the case of
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time-dependent sensitivity as described by Chambless’ recursive definitions, and takes the form of
a weighted average of the linear predictor in case of his alternative definitions.

We believe that NRI and IDI and their components offer useful insights into the process of
assessing model improvement. We saw an example in which they suggested that HDL improves
model performance—a finding consistent with current risk modeling practice that could be missed
with sole reliance on the AUC. At the same time, we still believe that improvement in the AUC
should remain the first criterion. But NRI and IDI should also be taken into consideration. For
very large or very small differences in performance, all three quantities, improvement in AUC,
IDI and NRI, should yield the same conclusions.

Our example also illustrates how increases in the AUC that would be considered small can
lead to a substantial improvement in reclassification as quantified by the NRI and a more modest
increase in the IDI. This might suggest reconsidering how to evaluate increases in the AUC—
perhaps an increase of 0.01 might still be suggestive of a meaningful improvement. Interestingly,
using the formulas presented in the Appendix, it can be deduced that assuming no change in
specificity and a uniform increase in sensitivity of 0.01 at every cut-off point, both the AUC and
IDI will go up by 0.01. This further illustrates how both can be seen as some forms of average
sensitivity. But is an increase of 0.01 in average sensitivity satisfactory? This might depend on
many factors. If specificity does not suffer and the additional burden and cost of obtaining the
extra marker are low, it might be worth it to include it in the prediction models. If we deal with
an expensive marker that is hard to obtain, we might want to resort to traditionally ‘inexpensive’
alternatives. As always, it is necessary to examine the clinical and public health implications of any
decision.

APPENDIX

Mathematical developments

Below we present how the IDI can be estimated by a difference in discrimination slopes given by
Yates [25, 26]. Let X represent the predicted probability of developing an event before time T and
let D be the event indicator. If f is the probability density function (pdf) of X , for any cut-off
point u, 0<u<1, we can express sensitivity and ‘one minus specificity’ as

Sensitivity(u) = S(u) = P(X>u|D = 1)=
∫ 1

u
f (x |D= 1) dx (A1)

OnemSpec(u) = P(u) = P(X>u|D = 0) =
∫ 1

u
f (x |D= 0) dx (A2)

With the above notation, the AUC, which corresponds to the area under the parametric plot of
S(u) vs P(u), can be expressed as (see Reference [16])

AUC=
∫ 1

0
S(u)

d

du
P(u) du =

∫ 1

0
S(u) f (u|D = 0) du = P(Xi>X j |Di = 1, Dj = 0) (A3)
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Further define the integrated sensitivity and ‘one minus specificity’ as

IS=
∫ 1

0
S(u) du =

∫ 1

0

∫ 1

u
f (x |D= 1) dx du (A4)

IP=
∫ 1

0
P(u) du =

∫ 1

0

∫ 1

u
f (x |D= 0) dx du (A5)

Interchanging the order of integration in formulas (A4) and (A5), we get

IS=
∫ 1

0

∫ x

0
f (x |D= 1) du dx =

∫ 1

0
x f (x |D= 1) dx = E(X |D = 1) (A6)

IP=
∫ 1

0

∫ x

0
f (x |D= 0) du dx =

∫ 1

0
x f (x |D= 0) dx = E(X |D = 0) (A7)

The conditional expectations are estimated by sample means for events and non-events, that
is p̂events =

∑
i in events p̂i/# events and p̂nonevents =

∑
j in nonevents p̂ j/# nonevents, respectively.

Hence, the integrated discrimination improvement (IDI) between the ‘new’ and ‘old’ models
defined as

IDI= (ISnew − ISold) − (IPnew − IPold) (A8)

can be estimated by

ÎDI= ( p̂new,events − p̂old,events) − ( p̂new,nonevents − p̂old,nonevents) (A9)

or equivalently

ÎDI= ( p̂new,events − p̂new,nonevents) − ( p̂old,events − p̂old,nonevents) (A10)

which is a difference of discrimination slopes.
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